Acerca del VHIR
El Vall d'Hebron Instituto de Investigación (VHIR) promueve la investigación biomédica, la innovación y la docencia. Más de 1.800 personas buscan comprender las enfermedades hoy con el objetivo de mejorar su tratamiento mañana.
Investigación
Trabajamos para entender las enfermedades, saber cómo funcionan y crear mejores tratamientos para los pacientes. Conoce nuestros grupos y sus líneas de investigación.
Personas
Las personas son el centro del Vall d'Hebron Instituto de Investigación (VHIR). Por eso nos vinculamos con los principios de libertad de investigación, igualdad de género y actitud profesional que promueve la HRS4R.
Ensayos clínicos
Nuestra tarea no es solo básica o traslacional; somos líderes en investigación clínica. Entra para saber qué ensayos clínicos estamos llevando a cabo y por qué somos referente mundial en este campo.
Progreso
Queremos que la investigación que se efectúa en el Vall d'Hebron Instituto de Investigación (VHIR) sea un motor de transformación. ¿Cómo? Identificando nuevas vías y soluciones para fomentar la salud y el bienestar de las personas.
Core facilities
Ofrecemos un apoyo especializado a los investigadores tanto internos como externos, desde un servicio concreto hasta la elaboración de un proyecto en su totalidad. Todo ello, con una perspectiva de calidad y agilidad de respuesta.
Actualidad
Te damos una puerta de entrada para estar al día de todo lo que sucede en el Vall d'Hebron Instituto de Investigación (VHIR), desde las últimas noticias hasta las actividades e iniciativas solidarias futuras que estamos organizando.
El grupo de diseño y farmacodinámica de nanopartículas del Vall d’Hebron Instituto de Investigación se centra en la síntesis, caracterización y aplicaciones de nanopartículas inorgánicas en el campo de la medicina. Al controlar el núcleo inorgánico (tamaño, estructura y forma) y la unión de moléculas a su superficie, diseñamos nanopartículas que pueden interactuar con los sistemas biológicos de una manera específica. También ponemos especial énfasis en la seguridad, viabilidad, ampliación, aplicabilidad y otros aspectos del diseño de nanopartículas para medicina.
Nuestro grupo está dirigido por el Prof. Víctor Puntes, quien tiene una Cátedra de Investigación ICREA. Dado que una gran parte de nuestro trabajo exige una experiencia altamente multidisciplinaria, mantenemos colaboraciones con físicos, biólogos, inmunólogos, oncólogos, y otros, de Europa, China y los EE.UU. El trabajo del grupo ha dado lugar a varias patentes y creación de spin-off como Nanotargeting y Applied Nanoparticles.
Getting advantages from the accumulated experience, I will study the most problematic points related to the growth of multi-component materials and hollow structures. We are preparing complex multifunctional environment responsive NPs comprising different families: i) metallic, ii) metal oxide, iii) semiconductor and iv) oxides of semiconductor. Beyond synthesis, I will focus on the precise characterization of the obtained NPs in terms of their reactivity and physico-chemical properties to precisely correlate morphology with activity. The synthesis of advanced NPs will be carry out, primarily, following seeding-growth approaches or by combining the simultaneous or sequential injection of precursor solutions, surfactant mixtures. The temperature of the solution will be adjusted in order to kinetically control the formation of the NPs and reaction times will be controlled to induce digestion processes and re-crystallizations/controlled sintering when required. I will use mixtures of surfactants or reducing agents and coordinating complexes under controlled atmospheres, intending to independently modify the solubility of the monomer, the nucleation radii, the growing rate and the morphology of the growing structure (by stabilizing different crystals phases and therefore lowering their energy and accelerating selected competing reactions). Hollow metal structures will be synthesized following a multi-step procedure. In the first step, Ag nanocubes are synthesized by known techniques (such as polyol synthesis). Polymetallic hollow NPs with very different morphology and composition, will be obtained by the simultaneous or sequential action of galvanic replacement and the Kirkendall effect in order to control the number and morphology of void spaces inside a single NP, and the chemical transformation of NPs such as cation release/exchange. This allows the production of, among other, monodisperse single- and double-walled nanoboxes or noble metal fullerenes, in high yields and scalable synthesis.
a. APPLICATION ON MEDICINE.
Nanotechnology’s ability to shape matter at the scale of molecules is opening the door to a new generation of diagnostics, imaging agents and drugs/therapies for detecting and treating disease. But perhaps more important, it is allowing to combine a series of advances, creating nanosized particles that may for example contain drugs designed to kill damaged cells together with targeting compounds designed to home-in on malignancies, and imaging agents designed to light up even the earliest stage of disease. For example NPs are perfect candidates to be used in anticancer therapy since they showed passive accumulation in solid tumours due to the Enhanced Permeation and Retention effect (EPR). Is in this context that nanotechnology emerges as a “disruptive technology” with a great potential to contribute to improve treatment by generating new diagnostic and therapeutic products. Its fields of action can be classified in diagnosis, imaging, drug delivery, hyperthermia, theranostics, the simultaneous diagnosis and therapy, and therapy monitoring.
It has been acknowledged that one of the most promising societal impacts of nanotechnology is in the area of nanomedicine. Personalized health care, rational drug design and targeted drug delivery are some of the proposed benefits of a nanomedicine-based approach to therapy. On this subject, my lines of work are: i) Nanooncology, the use of nanoparticles for diagnosis and treatment of cancer. Here I am developing NP-Biomolecule (as AuNP-Antibody) for detection (as lung cancer in breath or circulating cancer cells) and AuNP and Fe3O4 NP for diagnosis/imaging. I continue my work carrying antitumoral drugs with AuNPs (as cisplatin, oxaliplatin, carboplatin, doxorubicin, and sorafenib) and their use as radiotherapy enhancers or hyperthermia agents. ii) Immunology. Significantly important is the interaction of NPs with the immune system. Because one cannot put stuff inside the body without asking the immune system for permission, I am studying the effect of NP on antigen presentation, to then avoid immune detection (for a drug delivery vehicle) or design prophylactic and therapeutic vaccines (for molecular scaffolds). This includes as much AuNPs decorated with antigens as redox active anti-inflammatory CeO2 NPs. iii) Antimicrobial NPs. The emergence of antibiotic resistant strains of common pathogens is a major threat to health and is already putting tremendous pressure on health services worldwide. It has been shown that positive (cationic) nanoparticles show toxic effects to prokaryote, as defensines do. Also, silver, iron or cerium NPs, yield ions that are toxic for prokaryote cells (but well tolerated in eukaryote), acting as disinfectant and bacteriostatic agents. iv) Nanosafety: the prevention of unwanted effects produced by nanoparticles. This is one of our core-expertise areas and I have been working on it, developing NP models for toxicity and ecotoxicity testing, since FP06. My job is to understand which features of NPs poses health threats and then modify the NPs and the way they are used, to avoid the related hazards or exposure (risks) while maintaining the parental desired NP properties.
All this efforts have been translated into the creation of a spin-off company to exploit this knowledge: Nanotargeting (www.nanotargeeting.com), who is actually performing the regulatory preclinical studies and preparing the phase I clinical trials of Aurocis (cisplatin bounded AuNPs).
b. APPLICATION ON ENERGY.
We are facing energy and environmental threats that challenge our world: decrease/consumption of the fossil fuel reserves, global increase in energy demand, increasing pollution and the need to improve the processing of organic waste into a sustainable waste management, since damage to the environment is sooner or later translated into an energy cost. I am working on the design of advanced catalyst (multimetallic and heterodimer NPs) that are able to improve energy-chemical processes. Interestingly, energy harvesting and energy transfer processes are based on physic-chemical principles (electromagnetism) at the scale of few nm, from photosynthesis to electrical transport. I am also working on the design of a new generation of NPs for the production of hydrogen (with CdSe-Pt NPs) for reduction process and transform biomass and produce biofuels. Also I work on the use of iron oxide NPs to boost Biogas production thanks to the fact that iron ions are essential for the bacterial consortia responsible for the degradation and transformation of organic matter into methane. Our approach consists on the use of small concentrations of iron oxide nanoparticles designed and functionalized such that they progressively dispensing active iron ions at the necessary dose (not too low, not too high) for the bacteria, in analogy to sustained drug delivery, boosting methane production up to 300%. This work has been patent and it has received funds from the Bill and Melinda Gates foundation. This project has been granted the second SEGIB international prize and received support from the Programa Emprendedores of the REPSOL foundation leading to the creation of a Spin-Off, Applied Nanoparticles, dedicated to nanotechnology and energy/environment solutions which has, among other, the mission to exploit our Biogas enhanced production patent. I would like to stress that to me energy and environment are closely linked, while indeed, health and environment, are also extremely connected, since the health of the environment determine our morbidity. Regarding environment we address two issues, environmental toxicity of NPs and environmental remediation with NPs. I also focus on the electrochemical oxidation of molecules with our hollow Pt NPs where we are observing also important reactivity (and efficiency) boosts. Finally, I started in collaboration with the chemical engineering department of the UAB, with funding from the Fundación Ramón Areces, the study of nanostructures for the absorption of CO2, in such a way that in the future, the photocatalysis will reduce CO2 to other C species (CO, CH4, CH3OH, CHOOH) and it will be oxydized to recover energy and absorbed to avoid emissions and be transformed into a raw material in a close carbon cycle (note that 75% of south Africa gasoline is synthetic).
My work has position me as a privileged observer of the development of nanotechnology allowing me to advise and communicate to a broad audience. This is translated in participating as Project (e.g.: serenade-labex) or Industry (Nanonica) Scientific Advisor or communicating Science to Society, I am specially proud about the ebook “Nanoparticles before Nanotechnology” with more than 14.000 downloads. Also, the reporting of my activities in international media, as the BBC or The Guardian also indicates the societal the impact of my work.
IP: Victor Franco Puntes
IP: Victor Franco Puntes Colaboradores: - Entidad financiadora: Agència Gestió Ajuts Universitaris i de Recerca Financiación: 150000 Referencia: 2023 PROD 00200 Duración: 01/02/2024 - 31/07/2025
IP: Victor Franco Puntes Colaboradores: Joana Ramis Garcia, Lena Nerea Montaña Ernst Entidad financiadora: Agència Gestió Ajuts Universitaris i de Recerca Financiación: 40000 Referencia: 2021 SGR 00878 Duración: 01/01/2022 - 30/06/2025
IP: Victor Franco Puntes Colaboradores: Joana Ramis Garcia Entidad financiadora: Generalitat de Catalunya - Departament de Salut Financiación: 89693.23 Referencia: SLT017/20/000182 Duración: 14/07/2021 - 31/12/2024
IP: Anna Duarri Piqué Colaboradores: José García Arumí, Jordi Rosell Aluja, Victor Franco Puntes, Helena Isla Magrané, Joana Ramis Garcia Entidad financiadora: Instituto de Salud Carlos III Financiación: 174845 Referencia: AC19/00080 Duración: 01/01/2020 - 30/06/2024
PMID: 36923400 Revista: Frontiers in Immunology Año: 2023 Referencia: Front Immunol. 2023 Feb 27;14:1129296. doi: 10.3389/fimmu.2023.1129296. eCollection 2023. Factor de impacto: Tipo de publicación: Revisión en revista internacional Autores: Bastus, Neus G; Gonzalez-Rioja, Ramon; Puntes, Victor; Salazar, Vivian A et al. DOI: 10.3389/fimmu.2023.1129296
PMID: 36979013 Revista: Antioxidants Año: 2023 Referencia: Antioxidants (Basel). 2023 Mar 21;12(3):765. doi: 10.3390/antiox12030765. Factor de impacto: Tipo de publicación: Artículo en revista internacional Autores: Bastus, Neus G; Casals, Eudald; Casals, Gregori; Ernst, Lena M; Fernandez-Varo, Guillermo; Gusta, Muriel F; Jimenez, Wladimiro; Mondragon, Laura; Puntes, Victor; Ramis, Joana et al. DOI: 10.3390/antiox12030765
PMID: 36985887 Revista: Nanomaterials Año: 2023 Referencia: Nanomaterials (Basel). 2023 Mar 9;13(6):992. doi: 10.3390/nano13060992. Factor de impacto: Tipo de publicación: Artículo en revista internacional Autores: Arbiol, Jordi; Arenal, Raul; Bastus, Neus G; Genc, Aziz; Patarroyo, Javier; Puntes, Victor; Sancho-Parramon, Jordi et al. DOI: 10.3390/nano13060992
PMID: 37049267 Revista: Nanomaterials Año: 2023 Referencia: Nanomaterials (Basel). 2023 Mar 25;13(7):1174. doi: 10.3390/nano13071174. Factor de impacto: Tipo de publicación: Artículo en revista internacional Autores: Bastus, Neus G; Bigini, Paolo; Chakraborty, Indranath; Cui, Daxiang; Masood, Atif; Morelli, Annalisa; Parak, Wolfgang J; Pelaz, Beatriz; Puntes, Victor; Salmona, Mario et al. DOI: 10.3390/nano13071174
PMID: 35159859 Revista: Nanomaterials Año: 2022 Referencia: Nanomaterials (Basel). 2022 Feb 1;12(3). pii: nano12030511. doi: 10.3390/nano12030511. Factor de impacto: 5.076 Tipo de publicación: Artículo en revista internacional Autores: Manova, Alena; Bastus, Neus G; Moriones, Oscar H; Kohl, Yvonne; Dusinska, Maria; Runden-Pran, Elise; Puntes, Victor; Nelson, Andrew; Gabelova, Alena; Simon, Peter et al. DOI: 10.3390/nano12030511
PMID: 35401546 Revista: Frontiers in Immunology Año: 2022 Referencia: Front Immunol. 2022 Mar 17;13:750175. doi: 10.3389/fimmu.2022.750175. eCollection 2022. Factor de impacto: 7.561 Tipo de publicación: Artículo en revista internacional Autores: Ernst, Lena M, Puntes, Victor et al. DOI: 10.3389/fimmu.2022.750175
PMID: 34835755 Revista: Nanomaterials Año: 2021 Referencia: Nanomaterials (Basel). 2021 Nov 6;11(11). pii: nano11112991. doi: 10.3390/nano11112991. Factor de impacto: 5.076 Tipo de publicación: Revisión en revista internacional Autores: Ernst, Lena M, Casals, Eudald, Italiani, Paola, Boraschi, Diana, Puntes, Victor et al. DOI: 10.3390/nano11112991
PMID: 34394703 Revista: Nano Today Año: 2021 Referencia: Nano Today. 2021 Feb;36. doi: 10.1016/j.nantod.2020.101056. Epub 2020 Dec 20. Factor de impacto: 20.722 Tipo de publicación: Artículo en revista internacional Autores: Buzon, Maria J, Puntes, Victor, Genesca, Meritxell, Astorga-Gamaza, Antonio, Vitali, Michele, Borrajo, Mireya L, Jaime, Carlos, Bastus, Neus, Serra-Peinado, Carla, Luque-Ballesteros, Laura et al. DOI: 10.1016/j.nantod.2020.101056
PMID: 32692793 Revista: Nanoscale Año: 2020 Referencia: Nanoscale. 2020 Aug 7;12(29):15832-15844. doi: 10.1039/d0nr02379e. Epub 2020 Jul 21. Factor de impacto: 6.895 Tipo de publicación: Artículo en revista internacional Autores: Vitali, Michele, Casals, Eudald, Canals, Francesc, Colome, Nuria, Puntes, Victor et al. DOI: 10.1039/d0nr02379e
Doctorando: Joan Comenge Farré Director/es: Victor Franco Puntes Universidad: Universidad Autònoma de Barcelona Año: 2013
La Dra. Anna Vilarrodona lidera el estudio que pretende aumentar el tiempo de conservación de las córneas donadas para trasplante.
Profesionales sanitarios y de investigación se han reunido para unir sinergias y buscar soluciones innovadoras.