Sobre el VHIR
Al Vall d’Hebron Institut de Recerca (VHIR) promovem la recerca biomèdica, la innovació i la docència. Més de 1.800 persones busquen comprendre les malalties avui per millorar-ne el tractament demà.
Recerca
Treballem per entendre les malalties, saber com funcionen i crear millors tractaments per als pacients. Coneix els nostres grups i les seves línies de recerca.
Persones
Les persones són el centre del Vall d'Hebron Institut de Recerca (VHIR). Per això ens vinculem amb els principis de llibertat de recerca, igualtat de gènere i actitud professional que promou l’HRS4R.
Assaigs clínics
La nostra tasca no és només bàsica o translacional; som líders en recerca clínica. Entra per saber quins assaigs clínics estem duent a terme i perquè som referent mundial en aquest camp.
Progrés
Volem que la recerca que es fa al Vall d’Hebron Institut de Recerca (VHIR) sigui un motor de transformació. Com? Identificant noves vies i solucions per fomentar la salut i el benestar de les persones.
Core facilities
Oferim un suport especialitzat als investigadors tant interns com externs, des d’un servei concret fins a l’elaboració d’un projecte complet. Tot, amb una perspectiva de qualitat i agilitat de resposta.
Actualitat
Et donem una porta d’entrada per estar al dia de tot el que passa al Vall d’Hebron Institut de Recerca (VHIR), des de les últimes notícies fins a les activitats i iniciatives solidàries futures que estem organitzant.
El grup de Nanopartícules Farmacocinètiques del Vall d’Hebron Institut de Recerca es centra en la síntesi, caracterització i aplicacions de nanopartícules inorgàniques en el camp de la medicina. En controlar el nucli inorgànic (mida, estructura i forma) i la unió de molècules a la seva superfície, dissenyem nanopartícules que interactuen amb els sistemes biològics d'una manera específica. També posem especial èmfasi en la seguretat, viabilitat, ampliació, aplicabilitat i altres aspectes del disseny de nanopartícules per a la medicina.
El nostre grup està dirigit pel professor Víctor Puntes, qui té una Càtedra d'Investigació ICREA. Atès que una gran part del nostre treball exigeix una experiència altament multidisciplinària, mantenim col·laboracions amb físics, biòlegs, immunòlegs, oncòlegs i altres, d'Europa, la Xina i els EUA. El treball del grup ha donat lloc a diverses patents i a la creació d’empreses derivades (spin-off) com Nanotargeting i Applied nanoparticles.
Getting advantages from the accumulated experience, I will study the most problematic points related to the growth of multi-component materials and hollow structures. We are preparing complex multifunctional environment responsive NPs comprising different families: i) metallic, ii) metal oxide, iii) semiconductor and iv) oxides of semiconductor. Beyond synthesis, I will focus on the precise characterization of the obtained NPs in terms of their reactivity and physico-chemical properties to precisely correlate morphology with activity. The synthesis of advanced NPs will be carry out, primarily, following seeding-growth approaches or by combining the simultaneous or sequential injection of precursor solutions, surfactant mixtures. The temperature of the solution will be adjusted in order to kinetically control the formation of the NPs and reaction times will be controlled to induce digestion processes and re-crystallizations/controlled sintering when required. I will use mixtures of surfactants or reducing agents and coordinating complexes under controlled atmospheres, intending to independently modify the solubility of the monomer, the nucleation radii, the growing rate and the morphology of the growing structure (by stabilizing different crystals phases and therefore lowering their energy and accelerating selected competing reactions). Hollow metal structures will be synthesized following a multi-step procedure. In the first step, Ag nanocubes are synthesized by known techniques (such as polyol synthesis). Polymetallic hollow NPs with very different morphology and composition, will be obtained by the simultaneous or sequential action of galvanic replacement and the Kirkendall effect in order to control the number and morphology of void spaces inside a single NP, and the chemical transformation of NPs such as cation release/exchange. This allows the production of, among other, monodisperse single- and double-walled nanoboxes or noble metal fullerenes, in high yields and scalable synthesis.
a. APPLICATION ON MEDICINE.
Nanotechnology’s ability to shape matter at the scale of molecules is opening the door to a new generation of diagnostics, imaging agents and drugs/therapies for detecting and treating disease. But perhaps more important, it is allowing to combine a series of advances, creating nanosized particles that may for example contain drugs designed to kill damaged cells together with targeting compounds designed to home-in on malignancies, and imaging agents designed to light up even the earliest stage of disease. For example NPs are perfect candidates to be used in anticancer therapy since they showed passive accumulation in solid tumours due to the Enhanced Permeation and Retention effect (EPR). Is in this context that nanotechnology emerges as a “disruptive technology” with a great potential to contribute to improve treatment by generating new diagnostic and therapeutic products. Its fields of action can be classified in diagnosis, imaging, drug delivery, hyperthermia, theranostics, the simultaneous diagnosis and therapy, and therapy monitoring.
It has been acknowledged that one of the most promising societal impacts of nanotechnology is in the area of nanomedicine. Personalized health care, rational drug design and targeted drug delivery are some of the proposed benefits of a nanomedicine-based approach to therapy. On this subject, my lines of work are: i) Nanooncology, the use of nanoparticles for diagnosis and treatment of cancer. Here I am developing NP-Biomolecule (as AuNP-Antibody) for detection (as lung cancer in breath or circulating cancer cells) and AuNP and Fe3O4 NP for diagnosis/imaging. I continue my work carrying antitumoral drugs with AuNPs (as cisplatin, oxaliplatin, carboplatin, doxorubicin, and sorafenib) and their use as radiotherapy enhancers or hyperthermia agents. ii) Immunology. Significantly important is the interaction of NPs with the immune system. Because one cannot put stuff inside the body without asking the immune system for permission, I am studying the effect of NP on antigen presentation, to then avoid immune detection (for a drug delivery vehicle) or design prophylactic and therapeutic vaccines (for molecular scaffolds). This includes as much AuNPs decorated with antigens as redox active anti-inflammatory CeO2 NPs. iii) Antimicrobial NPs. The emergence of antibiotic resistant strains of common pathogens is a major threat to health and is already putting tremendous pressure on health services worldwide. It has been shown that positive (cationic) nanoparticles show toxic effects to prokaryote, as defensines do. Also, silver, iron or cerium NPs, yield ions that are toxic for prokaryote cells (but well tolerated in eukaryote), acting as disinfectant and bacteriostatic agents. iv) Nanosafety: the prevention of unwanted effects produced by nanoparticles. This is one of our core-expertise areas and I have been working on it, developing NP models for toxicity and ecotoxicity testing, since FP06. My job is to understand which features of NPs poses health threats and then modify the NPs and the way they are used, to avoid the related hazards or exposure (risks) while maintaining the parental desired NP properties.
All this efforts have been translated into the creation of a spin-off company to exploit this knowledge: Nanotargeting (www.nanotargeeting.com), who is actually performing the regulatory preclinical studies and preparing the phase I clinical trials of Aurocis (cisplatin bounded AuNPs).
b. APPLICATION ON ENERGY.
We are facing energy and environmental threats that challenge our world: decrease/consumption of the fossil fuel reserves, global increase in energy demand, increasing pollution and the need to improve the processing of organic waste into a sustainable waste management, since damage to the environment is sooner or later translated into an energy cost. I am working on the design of advanced catalyst (multimetallic and heterodimer NPs) that are able to improve energy-chemical processes. Interestingly, energy harvesting and energy transfer processes are based on physic-chemical principles (electromagnetism) at the scale of few nm, from photosynthesis to electrical transport. I am also working on the design of a new generation of NPs for the production of hydrogen (with CdSe-Pt NPs) for reduction process and transform biomass and produce biofuels. Also I work on the use of iron oxide NPs to boost Biogas production thanks to the fact that iron ions are essential for the bacterial consortia responsible for the degradation and transformation of organic matter into methane. Our approach consists on the use of small concentrations of iron oxide nanoparticles designed and functionalized such that they progressively dispensing active iron ions at the necessary dose (not too low, not too high) for the bacteria, in analogy to sustained drug delivery, boosting methane production up to 300%. This work has been patent and it has received funds from the Bill and Melinda Gates foundation. This project has been granted the second SEGIB international prize and received support from the Programa Emprendedores of the REPSOL foundation leading to the creation of a Spin-Off, Applied Nanoparticles, dedicated to nanotechnology and energy/environment solutions which has, among other, the mission to exploit our Biogas enhanced production patent. I would like to stress that to me energy and environment are closely linked, while indeed, health and environment, are also extremely connected, since the health of the environment determine our morbidity. Regarding environment we address two issues, environmental toxicity of NPs and environmental remediation with NPs. I also focus on the electrochemical oxidation of molecules with our hollow Pt NPs where we are observing also important reactivity (and efficiency) boosts. Finally, I started in collaboration with the chemical engineering department of the UAB, with funding from the Fundación Ramón Areces, the study of nanostructures for the absorption of CO2, in such a way that in the future, the photocatalysis will reduce CO2 to other C species (CO, CH4, CH3OH, CHOOH) and it will be oxydized to recover energy and absorbed to avoid emissions and be transformed into a raw material in a close carbon cycle (note that 75% of south Africa gasoline is synthetic).
My work has position me as a privileged observer of the development of nanotechnology allowing me to advise and communicate to a broad audience. This is translated in participating as Project (e.g.: serenade-labex) or Industry (Nanonica) Scientific Advisor or communicating Science to Society, I am specially proud about the ebook “Nanoparticles before Nanotechnology” with more than 14.000 downloads. Also, the reporting of my activities in international media, as the BBC or The Guardian also indicates the societal the impact of my work.
IP: Victor Franco Puntes
IP: Victor Franco Puntes Col·laboradors: - Entitat finançadora: Ministerio de Ciencia e Innovación-MICINN Finançament: 66250 Referència: CPP2023-010774 Durada: 01/11/2024 - 31/10/2027
IP: Anna Vilarrodona Serrat Col·laboradors: Alberto Sandiumenge Camps, Joan Comenge Farré, Victor Franco Puntes, Elisabeth Navas Moya Entitat finançadora: Fundación Invest. Médica Mutua Madrileña Finançament: 109998 Referència: FMM24VILARODONA Durada: 16/09/2024 - 15/09/2027
IP: Victor Franco Puntes Col·laboradors: Joan Comenge Farré, Lena Nerea Montaña Ernst Entitat finançadora: Ministerio de Ciencia e Innovación-MICINN Finançament: 187500 Referència: PID2023-148967OB-C21 Durada: 01/09/2024 - 31/12/2028
IP: Victor Franco Puntes Col·laboradors: - Entitat finançadora: Agència Gestió Ajuts Universitaris i de Recerca Finançament: 150000 Referència: 2023 PROD 00200 Durada: 01/02/2024 - 31/07/2025
PMID: 36923400 Revista: Frontiers in Immunology Any: 2023 Referència: Front Immunol. 2023 Feb 27;14:1129296. doi: 10.3389/fimmu.2023.1129296. eCollection 2023. Factor d'impacte: Tipus de publicació: Revisió en revista internacional Autors: Bastus, Neus G; Gonzalez-Rioja, Ramon; Puntes, Victor; Salazar, Vivian A et al. DOI: 10.3389/fimmu.2023.1129296
PMID: 36979013 Revista: Antioxidants Any: 2023 Referència: Antioxidants (Basel). 2023 Mar 21;12(3):765. doi: 10.3390/antiox12030765. Factor d'impacte: Tipus de publicació: Article en revista internacional Autors: Bastus, Neus G; Casals, Eudald; Casals, Gregori; Ernst, Lena M; Fernandez-Varo, Guillermo; Gusta, Muriel F; Jimenez, Wladimiro; Mondragon, Laura; Puntes, Victor; Ramis, Joana et al. DOI: 10.3390/antiox12030765
PMID: 36985887 Revista: Nanomaterials Any: 2023 Referència: Nanomaterials (Basel). 2023 Mar 9;13(6):992. doi: 10.3390/nano13060992. Factor d'impacte: Tipus de publicació: Article en revista internacional Autors: Arbiol, Jordi; Arenal, Raul; Bastus, Neus G; Genc, Aziz; Patarroyo, Javier; Puntes, Victor; Sancho-Parramon, Jordi et al. DOI: 10.3390/nano13060992
PMID: 37049267 Revista: Nanomaterials Any: 2023 Referència: Nanomaterials (Basel). 2023 Mar 25;13(7):1174. doi: 10.3390/nano13071174. Factor d'impacte: Tipus de publicació: Article en revista internacional Autors: Bastus, Neus G; Bigini, Paolo; Chakraborty, Indranath; Cui, Daxiang; Masood, Atif; Morelli, Annalisa; Parak, Wolfgang J; Pelaz, Beatriz; Puntes, Victor; Salmona, Mario et al. DOI: 10.3390/nano13071174
PMID: 35159859 Revista: Nanomaterials Any: 2022 Referència: Nanomaterials (Basel). 2022 Feb 1;12(3). pii: nano12030511. doi: 10.3390/nano12030511. Factor d'impacte: 5.076 Tipus de publicació: Article en revista internacional Autors: Manova, Alena; Bastus, Neus G; Moriones, Oscar H; Kohl, Yvonne; Dusinska, Maria; Runden-Pran, Elise; Puntes, Victor; Nelson, Andrew; Gabelova, Alena; Simon, Peter et al. DOI: 10.3390/nano12030511
PMID: 35401546 Revista: Frontiers in Immunology Any: 2022 Referència: Front Immunol. 2022 Mar 17;13:750175. doi: 10.3389/fimmu.2022.750175. eCollection 2022. Factor d'impacte: 7.561 Tipus de publicació: Article en revista internacional Autors: Ernst, Lena M, Puntes, Victor et al. DOI: 10.3389/fimmu.2022.750175
PMID: 34835755 Revista: Nanomaterials Any: 2021 Referència: Nanomaterials (Basel). 2021 Nov 6;11(11). pii: nano11112991. doi: 10.3390/nano11112991. Factor d'impacte: 5.076 Tipus de publicació: Revisió en revista internacional Autors: Ernst, Lena M, Casals, Eudald, Italiani, Paola, Boraschi, Diana, Puntes, Victor et al. DOI: 10.3390/nano11112991
PMID: 34394703 Revista: Nano Today Any: 2021 Referència: Nano Today. 2021 Feb;36. doi: 10.1016/j.nantod.2020.101056. Epub 2020 Dec 20. Factor d'impacte: 20.722 Tipus de publicació: Article en revista internacional Autors: Buzon, Maria J, Puntes, Victor, Genesca, Meritxell, Astorga-Gamaza, Antonio, Vitali, Michele, Borrajo, Mireya L, Jaime, Carlos, Bastus, Neus, Serra-Peinado, Carla, Luque-Ballesteros, Laura et al. DOI: 10.1016/j.nantod.2020.101056
PMID: 32692793 Revista: Nanoscale Any: 2020 Referència: Nanoscale. 2020 Aug 7;12(29):15832-15844. doi: 10.1039/d0nr02379e. Epub 2020 Jul 21. Factor d'impacte: 6.895 Tipus de publicació: Article en revista internacional Autors: Vitali, Michele, Casals, Eudald, Canals, Francesc, Colome, Nuria, Puntes, Victor et al. DOI: 10.1039/d0nr02379e
Doctorand: Joan Comenge Farré Director/s: Victor Franco Puntes Universitat: Universidad Autònoma de Barcelona Any: 2013
El treball busca una nova estratègia terapèutica més efectiva per tractar les malformacions arteriovenoses cerebrals, una de les causes principals d’ictus en infants i joves.
La Dra. Anna Vilarrodona lidera l'estudi que pretén augmentar el temps de conservació de les còrnies donades per a trasplantament.
Professionals sanitaris i de recerca s'han reunit per unir sinergies i buscar solucions innovadores.